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A linearized Fokker-Planck equation governing the particle loss rate from large magnetic 
and potential square-well fields is solved using the Rayleigh-Ritz finite element method with 
tensor-product splines. The results are compared with those obtained from an approximate 
analytical theory and previous numerical work. 

I. INTRODUCTION 

A central problem in the study of magnetic-mirror controlled-fusion devices is the 
determination of particle loss rates. When the joint magnetic-electrostatic trap w  
provides confinement is deep, the particle distribution function f is almost 
Maxwell-Boltzmann over most of the single particle phase space. The except 
boundary layer adjacent to that part of the boundary C which separates 
particles from untrapped particles. In that region, f is approximated well 
solution of a linerized Fokker-Planck equation (FPE) which is elliptic and self- 
adjoint. The particle loss rate is then given by an integral off. 

The boundary curve C and the coefficients in the Fokker-Planck equation are 
sufficiently complex that no exact analytic solutions are known. For the limiting case 
of a square-well trap, Pastukhov [l] found an analytic approximate solution by 
replacing the actual loss boundary by one that matched it locally in the region which 
makes the dominant contribution to the loss rate. Cohen et al. [2] extended this 
approximate solution to apply to either ions or electrons in arbitrary wells 
bounce-averaged Fokker-Planck equation. Cohen et al. [2] also solved the pr 
numerically for square-well fields in order to ascertain the validity of the analytic 
approximate solutions, solving the time-dependent nonlinear Fokker-Planck equation 
with a source of low-energy particles until a steady-state was reached. 

In this paper we describe a finite element approach to the problem. In Section IT9 
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we present a mathematical description. In Section III, we describe the Rayleigh-Ritz 
finite element method used to numerically solve the linearized Fokker-Planck 
equation. Finally, in Section IV, we compare our results with those obtained in 121. 

II. THE PROBLEM 

Cohen et al. [2] have given the high-velocity limit of the Fokker-Planck equation 
for a single species of ions of mass m and charge 2 confined by a large ambipolar 
potential. If F z flf,, where f is 
N(,,.@T>“2 e-mu212T 

the distribution function and f,= 
is the background Maxwellian corresponding to density N and 

temperature T, then the Fokker-Planck equation is given by 

gtv.vf+g ESLXB 
( C 1 

-V,f=V,- [(V,f)- v,v,g-YV,hl. (1) 

If the magnitudes of the magnetic field and the electrostatic potential are modeled as 
square wells, then the quasi-static approximate equation is given by 

W) = & p(X y> ~]+~[dx,Y)$+o, (2) 

where 

and 

p(X, Y) 3 evx (34 

q(x 
7 

q ~ (1 - y*> e-x 
4x ; (3b) 

X = mv2/2T is a dimensionless energy; Y = (U . B)/(vB) is the cosine of the pitch 
angle; vth = (T/m)Y2 is the ion thermal speed; op = (4zNZ2e2/m)Y2 is the ion plasma 
frequency; and A, is the Coulomb logarithm. 
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FIG. 1. The domain of large velocities where the reduced Fokker-Planck equation (2) applies. 
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Equation (2) is valid in the region 

D :x>x,, 0 < Y<MIN{l,z(X)}, 

shown in Fig. 1 and is subject to the following boundary conditions: 

BCl: F(X,, Y) = 1, 

BC2: $$(X,O)=O: 

(5a) 

(W 

BC3: F(X, 1) < co, 

BC4: F(X, z(X)) = 0, 

BCS: e-,+k’-t 0, 

for .X0 <X<Xx,; 

for x1<: 

a3 x--+cs. 

re X, s Ze#jT is the difference in the confining potential between the t nd 
center, in units of the background temperature T, and R z (B at throa at 

center) is the mirror ratio at the throat. The boundary condition BCl states that the 
distribution function in the region near the loss boundary should asymptotically 
match the Maxwellian at low velocities; the value of the dimensionless energy X0 
where this matching takes place is as yet undetermined. The boundary co~ditiQ~ 
expresses the symmetry of the distribution function about the velocity-s 
midplane. The boundary condition BC3 is a regularity condition for the distrib 
function at 106 velocities and zero pitch angle. The boundary condition 
expresses the vanishing of the distribution function at the loss boundary. Finally, the 
boundary condition BC5 states that the distribution function should approach zero at 
large velocities. 

Equation (2) is the Euler equation of the variational integral 

v(F)qD [p (g)* + q ($g2 (6) 

Any continuously differentiable function F(X, Y) which satisfies the essentiaI 
boundary conditions BCl, BC4, and BC5 and minimizes V(F) over the set of all such 
functions also satisfies (2) and the natural boundary conditions BC2 and BC3. 

If Eq. (1) is integrated over the trapped particle domain in v space, then ap 
Gauss’ theorem to the collision term on the right-hand side gives 

p= 
I 

n * [(V&f). v,v,g- 2fV,h] d-4, 

for the particle flux across the loss boundary, where the integral is over the surface af 
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the loss region and n is the outward normal to the surface. In the quasi-static high- 
velocity approximation this becomes 

44 
lJ= (243'2u:k 

q(-& z(X)) $(X, z(X)) dX 

i 

1 

t 
(I-l/R)V’ 

I’@-‘(Y), Y) g (z-‘(0 y> dY 1 
4-4 lF(X,, Y)dY, 

= - (2743'24 J^ o ax 

(8) 
where the last equality is obtained by integrating (2) over the domain D. By 
multiplying (2) by F, integrating by parts, and applying the boundary conditions (5), 
one can show that 

i.e., the particle loss rate is proportional to the minimum of the variational integral 
V(F) over the set of smooth functions satisfying the essential boundary conditions. 

III. THE NUMERICAL METHOD 

In this section, we describe a Rayleigh-Ritz finite element method for finding an 
approximate solution to (2)-(5). In contrast to a finite difference method which 
would approximate the value of the solution F on some grid, a finite element method 
finds an approximation to F from a finite-dimensional affine subspace of the afftne 
space S of smooth functions which satisfy the essential boundary conditions. We 
begin with a general discussion of the Rayleigh-Ritz method. 

Let g(X, Y) be any smooth function which satisfies the essential boundary 
conditions BCl, BC4, and BC5; let St be a finite-dimensional linear space of 
functions u(X, Y) satisfying BC4, BC5, and 

BC 1’: F(x,, y)=O, for O<Y,<l; @‘I 

and let {Bk(X, Y)} be a basis for Si. Then the Rayleigh-Ritz approximation to the 
solution of (2~(5) from the afftne subspace g + Si is given by 

F/&K y> = d-T Y) + c dkBk(X Y), (10) 
k 

where the coefficients dk are chosen to minimize V(F,J: 
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Setting the first variation of V(F,) to zero, we find that 

2 ai,dj = Yi, 
j 

(1%) 

where 

and 

ri s - i3Bi ag 
pax-E+q 

Note that Fh satisfies BCl, BC2, and BC5 exactly. Recalling that F rnin~rn~~~s 
V(F) over the afline subspace S of all smooth functions which satisfy these essential 
boundary conditions, it follows that V(F,) > V(F), i.e.: that the estimate for the 
particle flux will be conservatively high. Moreover, it can be shown that 

where K is some constant independent of St and 

so that the error in the flux approximation is proportianal to the square of the error 
in the derivatives of the approximation (see [ 31). Finally, since the Rayleigh- 
approximation minimizes V over the afiine subspace g + Sgh, V(Fk) decreases 
monotonically toward V(J) as St grows. 

Problem (2~(5) is posed on an infinite domain which introduces ~~mpli~at~o~s for 
a numerical method. Thus we truncate the domain at some sufficiently large X = X2 
and replace the boundary condition BC5 by 

BC5’: gi(X,. y>=o, for 0 < Y < z(X) (5e’) 

(nb., BC5’ is roof an essential boundary condition as was BC5). 
Finding basis functions which satisfy the essential boundary conditions BC1’ an 

RC4 is made difficult by the curved loss boundary (cf. [2]), To avoid this ~rob~~rn~ 
we transform the domain into a rectangle by the mapping 
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Note that the transformation has discontinuous X-derivatives at X=X, which means 
that the solution to the transformed problem will have discontinuous derivatives as 
well. 

Having reduced the irregular, semi-infinite domain D to a rectangle, we choose the 
functions in S,h to be products of piecewise polynomials. The B-splines are a very 
flexible basis for univariate piecewise polynomials of arbitrary order and continuity 
on a (nonuniform) mesh (see [4]). The particular space is determined by the order 
(= degree plus one) and a set of knots which specify where the breaks between 
piecewise polynomials occur and (by their multiplicity) the number of continuous 
derivatives at such points. Let the space Sk be the span of all products of the form 
b#‘, where the {b;} and bjy } are the univariate B-splines defined on the intervals 
[&,&] and [O, 11, respectively. We take St as the subspace of functions in Sk 
which satisfy the essential boundary conditions BCl’ and BC4. 

Recall that the solution to the transformed problem has a discontinuous x- 
derivative at x = 1,. Thus we must include functions which satisfy this condition in 
the subspace Si. This is easily done by putting a multiple knot at that point. 

Also F seems to have singular derivatives near the loss boundary vertex, and we 
would like to grade the mesh nearby so as to achieve higher accuracy in the approx- 
imate solution, But again nonuniform meshes are easily handled by B-splines. We 
used a P-graded mesh (see [5]), e.g., the mesh 

x(i) = (i/N)4, O<i<N, (16) 

on [0, I], where /3 is a positive constant. The proper choice of p ensures that the rate 
of convergence for singular problems (as a function of the dimension of Si) is the 
same as that for nonsingular problems (see [6]). 

Up to now, we have not specified g(X, Y) and have been somewhat vague on how 
to fmd the subspace of Sk which satisfies the essential boundary conditions BCl’ and 
BC4. Both of these problems can be handled in the same fashion. We fix the coef- 
ficients of a basis for those functions in Sk which do not satisfy BCl’ and BC4 by 
doing a least-squares projection of the boundary data; i.e., we choose the coefficients 
to minimize 

(17) 

where S denotes that part of the boundary where the essential boundary conditions 
are posed and h denotes the value of the solution on S. This means solving the linear 
system 

C bijdj = ti, 
.i 
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where 

b, zc 
i 

BiBj ds, 
s 

and i and j run over the indices of those basis functions, which do not satisfy 
and BC4. Since the boundary values are constant, there exist functions in S, which 
satisfy the essential boundary conditions exactly and the corresponding g will as well. 

Instead of solving (18) separately and then forming and solving the 
equations, we use a penalty method. First we form the Rayleigh-Ri 
there were no essential boundary conditions, using the entire space 
in a large multiple of the least-squares equations. A careful analysis (see [7]) shows 
that in essence we are solving for g and the Rayleigh-Rit2 a~proximat~Qn g $ 
simultaneously. 

The coefficient matrix of the linear system is symmetric and ~~sitive-~e~n~t~~ an 
the natural ordering of basis functions yields a ragged band of nonzero entries 
use a profile Cholesky algorithm (see [S]) to solve for Irk, 

Up to now, we have formulated everything in ter 
such integrals must be computed numerically. used a tens0 
Gauss-Legendre quadrature both to form the Raylei 
to evaiuate the flux. In small- to medium-sized problems, the cost of eval 
integrals dominates the cost of solving the linear system so that efficient 
crucial. By integrating first in x and then in y, it is possible to significa 
the efficiency of the assembly phase (see 16, lo]). 

IV. RESULTS 

The affine space S, is determined by the input parameters X0, X, , X,, 
number (NXL) of mesh intervals in x between X, and X,; the number (NXBi) of 
mesh intervals in x between X, and X2; the number (NY) of mesh intervals i ; the 
order (K) and continuity (C) of the basis functions; and the ,&grading factors and 
,!3,) in x and ye The numerical solution also depends on number of q~~~~~t~~e 
points per rectangular mesh element used for setting up th aylei~~-Rite eqnat~~n5 
(NQS) and for evaluating the flux (NQF). 

TABLE I 

Black Box Parameter Settings 

Parameter: X0 NXL. NXR NY K C ,L?, 8, NQS NQF 
Value: X1/8 4 8 8 4 2 4 4 3 5 
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TABLE II 

Typical Tensor-Product Mesh (X, = 3, R = 10) 

X-axis mesh Y-axis mesh 

0.3750000 
1.6190060 
2.6889985 
2.9805624 
3.0000000 
3.0194376 
3.3110015 
4.3809940 
5.6250000 
7.4910090 

10.2900220 
14.4885430 
20.7863230 

0.0000000 
0.2369535 
0.4739070 
0.7107501 
0.8815232 
0.9625132 
0.9925952 
0.9995372 
1 .oOOoooo 

Since X, and R are the only physical input parameters, it is desirable to fix the 
remaining parameters and to consider the code as a black box returning a flux 
approximation P(X,, R) which depends only on X1 and R. For the particular case 
X, = 3 and R = 10, we found that P(X,, R) was relatively insensitive to changes in 
the parameter settings given in Table I; refining any of these parameters produced 
changes in the particle flux of less than 1 part in 100. Basically, the code uses C2- 
bicubic splines which may have jumps in the x-derivative at X, ; the B-spline break 
points for this case are given in Table II (the last four mesh intervals in x were 
chosen to increase geometrically by a factor of $). Fortunately, we found these 
parameter settings were also satisfactory for other values of interest for X, and R. 

For the problem as formulated in Eqs. (2)-(9, the flux estimates were somewhat 
higher than the flux estimates reported in [2]. When the asymptotic Rosenbluth 
potentials appearing in the coefficients were replaced by their isotropic counterparts, 
i.e., the coefficients in (2) were taken to be 

and 

p(X, Y) 55 eVX[erf(X1’*) - Xy2eex] (3a’) 

q(X, Y) z eex (’ i12’ [ (I - &) erf(X1/2) - fX-1j2e-X], (3b’) 

agreement with the estimates in [2] was within a few percent for many values of 
interest for X, and R. 

Results for selected confining potentials and mirror ratios are shown in Figs. 2 and 
3, comparing estimates for the confinement time r (= N/p) to the numerical estimates 
obtained by Cohen et al. and the analytic approximation due to Pastukhov [2]. 
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FIG. 2. Ion confinement time versus potential for R = 10, T= 30 keV, m = 2.5 amu, Z = I. The 
solid curve is the analytic approximation due to Pastukhov; the points labeled A are the numerical 
estimates obtained by Cohen et al.; the points labeled 0 are the results for the asymptotic Rosenbluth 
potentials; and the points labeled 0 are the results for the isotropic Rosenbluth potentials. 

Figure 2 is a plot of the confinement time versus the potential for a single ion 
species of mass m = 2.5 amu, temperature T= 30 keV, Z = 1, and mirror ratio 
R = IQ. For large potentials, the agreement with previous work is good.. T 
deviation at small potentials is probably due to the fact that (2) is only valid for 1 
potentiais. 

Figure 3 is a plot of the confinement time versus the mirror ratio for a single ion 
species of mass m = 2.5 amu, temperature T= 30 keV, Z = 1, and confining ~ot~~t~a~ 
e#/T = 3. For small mirror ratios, the agreement with previous work is again goo 

FIG. 3. Ion confinement time versus mirror ration for e#/T = 3, T= 30 keV, M = 2.5 amu, Z = 1. 
The solid curve is the analytic approximation due to Pastukhov; the points labeled A are the numerical 
estimates obtained by Cohen et al.; the points labeled •i for the asymptotic Rosenbluth potentials; and 
the points labeled @ are the results for the isotropic Rosenbluth potentials. 
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The deviation at large mirror ratios may be due to differences in the handling of the 
loss boundary. 

In comparing these results, it is important to bear in mind that Eq. (2) is only an 
approximation to Eq. (1). Pastukhov gave an approximate analytic solution to (2); 
and the results presented here are an accurate numerical solution. On the other hand, 
the results of Cohen et al. were obtained by solving numerically the time-dependent 
nonlinear Fokker-Planck equation (1) by methods appropriate for a more complex 
problem, but correspondingly less accurate than those used in this work. 

In summary, the large-potential, high-velocity reduced Fokker-Planck equation 
exhibits many of the difficulties typically encountered in solving linear elliptic 
boundary-value problems. Given a proper formulation, the use of finite element 
methods with tensor-product basis functions was confirmed as a robust and efficient 
numerical method for the solution of such problems. In particular, the inability to 
satisfy essential boundary conditions exactly, which could have been a nagging 
source of error, was avoided by mapping the original domain into a rectangle,’ a 
technique which applies to nonlinear and time-dependent poblems as well; and the 
lack of smoothness of the solution to the mapped problem was handled by semi-local 
mesh refinement and the use of nonsmooth basis functions. 
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